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NOMENCLATURE

a, b, c,d, coefficients in equation (20);
A,B,C, constants in Clausius—Clapeyron

Bi,

equation;

hL/k, Biot number

specific heat at constant pressure;
(kg™ K™'];

¢,/¢po, dimensionless specific heat

at constant pressure;

PmCpm/(pC,), heat capacity ratio;
diffusion coefficients for Fick’s

law for air-vapor mixture [m?s~1!];
D/D,, dimensionless diffusion
coefficient ;

effective shape factor for

radiation;

8+ 67 St/Bi, fire temperature group;
convective heat transfer

coefficient [Js™'m 2K ™'];

mass transfer coefficient [kgs ™' m~?];
heat of evaporation of water [JTkg™!];
hy /(¢ 0 Ty o), dimensionless heat

of evaporation of water;

thermal conductivity [Js *m 'K !];
k/ko, dimensionless thermal
conductivity;

Darcy’s coefficient [m*skg~!];
kpp./og, dimensionless Darcy’s
coefficient ;

length for plane geometry and outer
radius for cylindrical geometry [m];
D,/ay, modified Lewis number ;
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Abstract—The transient solution of two-phase, two-component flow in one-dimensional or axi-symmetric
porous concrete structures exposed to time-dependent nonlinear mixed boundary conditions has been
obtained. The basic mechanisms considered in the theory are: heat conduction through all the
components, the molecular diffusion of the gaseous components, and the pressure driven convective flow
governed by Darcy’s law. The governing heat and mass transfer equations are solved numerically by an
implicit finite difference scheme. A simplified technique for calculating the temperature field is developed
and the results compare favorably with the complete analysis. The temperature fields for dry and wet
cases do not differ significantly for normal amounts of moisture content in concrete. General results are
given for two limiting fire histories, the American Society for Testing and Materials E-119
time-temperature curve and a short-duration, high-intensity time~temperature curve. Comparisons are
made between experimental and theoretical temperature fields in a wet, porous, alumina powder system.
Good agreement is obtained. Applications to structural fires and a variety of other heat and mass transfer
problems are discussed.

pressure [Nm~?];

p/p.,, dimensionless pressure;

1 for geometry, and x or x

for cylindrical geometry;

gas constant per unit mass [Jkg ' K™'];
hpL/(p,,D), Sherwood number;
of LT} o/k, modified Stefan number;
time [s];

tog/L?, dimensionless time;
absolute temperature [K];
velocity [ms™!];

uL/o,, dimensionless velocity;
Pi/Pm mass fraction of specie i
with respect to the density

of air-vapor mixture;
Wi/W, o o» Tatio of the mass
fraction of specie i to

the initial ambient

mass fraction of air:

distance [m];

x/L, dimensionless distance.

Greek symbols
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k/(pc,), thermal diffusivity
[m?s™'];

/oy, dimensionless thermal
diffusivity ;

production rate of specie i per

unit total volume (kg™ 3s~!];

I, L2/(poa), dimensionless rate of
production of special i;

void volume/total volume, porosity ;
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0, T/T; ., dimensionless temperature;

0, mass per unit total volume,
density [kgm™*];

2, p/po, dimensionless density ;

p¥,  mass of specie i per unit volume
of specie i [kgm~?];

o, Stefan-Boltzmann constant
[Js™'m™2K™*].
Subscripts
a, air;
f fire;
i, specie i;
1, liquid ;
m, air-vapor mixture,
s, solid ;
sat,  saturation point for vapor;
v, vapor;
0, initial condition or datum;
o0, ambient.
INTRODUCTION

AN IMPORTANT problem in fire safety is determining
the structural integrity of a building after a severe
fire. Not all pertinent damage is visible, so it is
necessary to predict the internal stresses which result
from any given fire. The first step is to predict the
thermal behaviour of the structure when subjected to
a known fire. This thermal response then determines
the internal stresses and therefore the structural
safety.

The problem is complicated by the presence of
moisture in concrete. The water inside the structure
evaporates due to heating which in turn generates
high pressures and strong concentration gradients.
High pressure causes the gases (air and water
vapour) to flow toward the surface. In addition,
ambient air diffuses into the concrete structure to
balance the concentration gradients developed dur-
ing evaporation. Mass diffusion of water vapour also
enhances the evaporation rates. The fields are
described by the overall energy equation, a con-
tinuity equation for each component, Darcy’s law for
each phase, an equation of state for each gaseous
component, and the transport property relations.

The study thus carried out has diverse industrial
applications. Multiphase flow is of special interest to
the petroleum industry due to its applicability to
secondary petroleum recovery. Drying processes and
transport of pyrolysed combustibles influence the
burning of most natural, some synthetic polymers.
Heat and mass transfer plays an important role in
the stress calculations for the storage of radioactive
waste in concrete enclosures. The flow of cavity gas
following an underground nuclear explosion also
falls in the same category. In general, the present
analysis is applicable to any heat and mass transfer
problem with phase change in a porous medium.
With some modifications, the solution technique can
be extended to heat transfer problems with internal
chemical reactions.

The problem considered here is a concrete struc-
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ture surrounded by a known fire with an external
bounding surface as shown in Figs. 1a and b. The
analysis is limited to one-dimensional or axi-
symmetric geometry due to the complexity of the
problem. The simultaneous solution of the unsteady
differential equations for porous media is required.
This solution then serves as an input to the
structural analysis. Since most structural effects
occur after flashover, only this time period will be
considered. As in the standard test methods [1, 2],
the fire is described by a specified gas phase
temperature history. The interaction between the fire
and the structural element is described by a view
factor, total emissivities of the fire, the element
surface, the surrounding compartment surfaces, and
a convective heat transfer coefficient. Sahota and
Pagni [3] obtained a quasi-analytic solution of a
two-dimensional conduction problem with time-
dependent, nolnlinear, mixed boundary conditions
ignoring property variations and moisture transfer.
Whether these effects dominate depends on the exact
application. Bresler and co-workers [4-6] have
approached the conduction problem, along with the
internal stress problem, using the finite element
method. Comparisons have been reported [3] with
their numerical solutions and experimental data.

Most of the previous work for heat transfer in
porous media is for single phase, either liquid or gas,
flowing through the medium [7-13]. Luikov defined
a system of coupled differential equations on the
basis of thermodynamics of irreversible processes
[14] and presented a set of solutions for several
geometries and boundary conditions [15]. The
validity of linear flux—force equations based on
nonequilibrium thermodynamics in a closed system
at steady state conditions, was investigated experim-
entally [16]. Chase er al. [17] solved a linear system
of differential equations by making many simplifying
assumptions for the case of regenerator type mass
exchangers. Kumar [18] extended the variational
formulation technique based on local potential to
simplified nonlinear heat and mass transfer equa-
tions in a porous medium. Gupta [19], following
Kumar, applied local potential and integral tech-
niques by defining a moving evaporation front which
divided the system into dry and wet regions. Murty
et al. [20] solved the mass diffusion equation in a
partially liquid filled porous matrix by Laplace
transforms and contour integration. Kozdoba and
Chumakov [21] obtained heat and mass transfer
equations with an allowance for the difference
between the coolant (air-vapor mixture) and the
skelton (porous medium) temperatures for transpi-
ration cooling. Solution techniques based on finite
integral transforms [22] and the finite element
method [23] have been obtained. Some experimental
results pertaining to porous media such as, cotton
[24], porous bronze [25], and the materials com-
monly used as protective coverings for steel in
building construction such as, clay, concrete, gyp-
sum, lime mortar, can be found in {26].



Heat and mass transfer in porous media subject to fires

Most of the literature cited above does not take
into account the pressure build up inside the porous
medium due to evaporation and subsequent move-
ment of the fluids. Rubin and Schweitzer [27]
considered the flow of liquid from a reservoir at high
pressure entering a porous medium which is heated
from the other side causing evaporation of the liquid
within the medium. But they ignored mass diffusion.
Morrison [ 28] made an elaborate analysis applied to
the cavity formed by underground nuclear ex-
plosions. Mass diffusion and heat conduction
through the porous medium were neglected. Harmathy
[29] reported heat and mass transfer caluclations at
low temperatures for fire clay bricks and compared
the results with experiments. Min and Emmons [30]
presented an elegant but simple analysis presup-
poposing a dry—wet interface, and compared the results
with their experimental data on packed aluminum
oxide powder. Saito and Seki [31] analyzed a one-
dimensional moist porous material problem neglect-
ing mass diffusion, postulating a dry-wet interface,
and neglecting the volume occupied by the liquid.

In the present analysis, all the terms are initially
included in the applicable differential equations. No
dry-wet interface is postulated; however, the results
obtained predict such an interface. The advantages
of this are: (1) The problem of locating the dry—wet
interface is eliminated, which is particularly useful in
multi-dimensional systems; (2) no boundary con-
ditions at the interface are required; and (3) the
analysis is applicable to both kinds of problems, with
and without inside discontinuities.

All the previous work known to the authors
ignored the condensation of the vapor in the dry
region. This condensation is possible if the tempera-
ture in the wet region exceeds the temperature in the
dry region, as could be the case during the
temperature fall portion of the fire time-temperature
curve. The present analysis takes into account this
phenomenon; however, it is not observed to be of
critical significance.

Finally, an attempt has been made to simplify the
governing equations by nondimensionalizing the
system and comparing the relative magnitude of each
term. A simple technique for caluclating the tempera-
ture field is then developed and found to accurately
describe systems of practical import. When the
pressure field calculation is not required, which is
often the case, this simple technique is especially
convenient.

THEORETICAL FORMULATION

Assumptions

The following assumptions are made for the
theoretical model:

1. Local thermodynamic equilibrium exists. Ac-
cording to Morrison [28] the response time for local
heat transfer between the fluid and the solid is
several orders of magnitude smaller than the times of
interest. Therefore the temperatures of the fluid and
solid are the same at each point and the assumption
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of local thermodynamic equilibrium is valid. This
makes a heat transfer model between fluid and solid
unnecessary and provides an unambiguous definition
of the temperature at a point.

2. Liquid—vapor equilibrium exists in the presence
of free water, which makes the partial pressure of the
vapor equal to the saturation pressure. A more
accurate expression for the partial pressure can be
used if the adsorption characteristics of the medium
are known. This assumption is not a necessary
feature of the theory and is made only because it is
observed to be the case.

3. Movement of the liquid is neglected. This also
is not an inherent feature of the theory and the
liquid-movement can easily be incorporated given a
Darcy’s coefficient for the liquid. But the value of
Darcy’s coefficient for the movement of the liquid is
so small compared to that of the gases, that the
liquid movement is negligible. This is further sub-
stantiated by Harmathy [29] and Min and Emmons
[30] who claim that the liquid, particularly at low
moisture content, is present in the pendular state,
that is, the liquid in different pores is not
interconnected.

4. Evaporation of chemically and physically
bound water is neglected. This assumption is again
not a necessary feature of the theory. It is made in
the absence of the detailed information on bound
water kinetics.

5. Darcy’s law with variable coefficient holds for
gases. Usually, this law holds for steady flows under
isothermal conditions. Schweitzer [32] modified it
for nonisothermal conditions and noted his result
simplified to the ordinary Darcy’s law with variable
coefficient if the viscosity was not a strong function

UNIFORM
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UNIFORM  FIRE
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(b) AXI—SYMMETRIC GEOMETRY
F1G. 1. Alternative system geometries.
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of temeperature. Rubin and Schweitzer [27] also
modified Darcy’s law for transient problems. Again
they found the additional term to be negligible for all
practical purposes due to small values of the
Reynolds number encountered in porous media.

6. Air and water vapor are treated as ideal gases.
All systems of interest are far from the critical point.

Analysis

The system considered is shown schematically in
Figs la,b. The spatial uniformity of the fire
introduces symmetry at the center of the structural
element with zero flux conditions at this interior
boundary. The results presented here use these
conditions; however, the analysis can be easily
modified for asymmetric problems.

The following governing equations and boundary
conditions describe the complete system [33]. The
final energy equation, after incorporating some
simplifications involving mass conservation, is

3 2 1 @
T _GIT 1L Ly
at 0% pegr Ox
_ pmcpm[um+D(cpv_Cpa) awajl}_‘?z
pc, Com ox |} Ox
Lin r—L R, T) )
PCP fgt m ot PmBy s

where k, p, ¢, and o are the overall values. The
initial and boundary conditions are

T(x,0) = Tox), @
Ton=0, o)
ax

- kfg-(L,t) = W[ T(L,)— T,(t)] +fo[ T*(L.t)— T} )]
(4)

. The species equation for air is given below. The one
for vapor is omitted as only one species equation is
needed if the overall air-vapor continuity is included.

ow ?w 1 2
A =Dty D)—
ot ox? +[pmr dx (rPnD) um]

N
o Ma_ w, I, ‘

5
e 5)
The initial and boundary conditions are
Wn(x7 0) = wa.O(x)s (6)
d
T2(0,1) =0, (M)
X
aw,
_me-gx—(L’t) = hD[Wa(Lat)“ Waeo (2)] (83)
for dry surface, and
=P
wolLot) = ? (8b)

R,—R, »p
j [ —_ _”.L,t
R Xp( )

v

for wet surface.
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Equation (8b) has been obtained from the equa-
tions of state for vapor and air. When the surface is
wet, the partial pressure of the vapor at the surface is
equal to the saturation pressure. Thus w.(L,?) is
explicitly known in that case. The velocity of the
air-vapor mixture is given by

with the boundary condition

pL.t) = py.

The conservation of gas phase mass gives

%+%§;(mmum}=rm, (1
with the boundary condition
u,(0,1) = 0. (12)
The continuity equation for the liquid is
%?:rzz—rm, 13)
with only the initial condition required,
pi(x,0) = py o(x). (14)

Equations of state for the vapor and the air-vapor
mixture are

p.,(e—-ff;) —(-w)puRT  (15)
p

!

14
p( —;;;)=me,”7:

Since liquid and vapor are assumed in equilibrium,

(17)

(16)

pU = psﬂl (T)’
in the presence of liquid water. An analytic ex-
pression for p,, is obtained by Sahota [33]. The
result is

- A
Pear(T) = CT_B/R"CXI)(E"?:), (18)

»

where A =3.18 x 106 Jkg~!, B=2470J kg ' K™! and
C = 6.05 x 10?2 N'm 2. This set of equations describes
the heatand mass transfer problem in a porous medium.
In summary, the equations to be solved are: energy,
species equation for air, Darcy’s law, mixture gas
continuity, liquid continuity, two equations of state,
and Clausius~Clapeyron equation (phase equilib-
rium). The unknowns are: temperature, air mass
fraction, pressure, mixture massaverage velocity, liquid
density, mixture production rate, mixture density, and
vapor partial pressure.

These eight governing equations with eight un-
knowns define the system completely. It is com-
putationally convenient to recast these equations in
terms of the pressure and to explicitly eliminate the
evaporation term which does not have a simple
Arrhenius type expression but rather is obtained
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implicitly from the liguid—vapor equilibrium assum-
ption. Differentiating equation of state (16) with
respect to ¢ and simplifying by making use of
equation (13); substituting for dp_/0t from the
resulting equation, u,, from equation (9), and 0p,/dt
from equation (13) into equation (11), one obtains,

op

0 o*
L pho o (pako) 2
X

c
aPhgat

m

L.p p p 0
—{1- +—=(R,T).
+%< ot RT) TR To )
The above equation applies irrespective of whether
the region is dry or wet. However, if the region is
wet, T, in equation (19) is not explicitly known.
Thus it is useful to eliminate I',, from equation (19),
and obtain an equation applicable in the presence of
liquid. The result is
62 i)
LU | P, p

b——c,

ﬁt - Ox

19)

20

where

2n

b (3)|

pv pc, ( _ )J
prmT

[}

w1dp, p[ 1 0

_pmcpm /u +Dcpv_cpa %\—lﬁz
pe, \ " Com  OX }J ox
/1 e\

LU — 1
TR )
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w,R, pobm \° pt)
th-——J Povep(i__P ) )
L prR,T ) \ pfR,T /]
1 R,—R oT |
% _+M&]~ . (23)
L R, pjot}
and
ot
w, p:*RmT)
d=- ,
1_ I 4
K pz*RmT)
-/ 2\
Dy PRy | 1 th"’*/?_i“)
Leimomoh —T 24
p, pc, |R,( p 4

(=) J
with the primed symbol above defined as p;
=dp,/dT. The details of the derivation of equation
(20) are given by Sahota [33] The important
features of equation (20} are that it holds in the wet
region so that the liquid—vapor equilibrium assump-
tion is satisfied, and it does not contain the
evaporation term I',,. So this equation can be solved
for the pressure field in the wet region. Once the
pressure is known, I', is calculated from equation
(19).

The initial and boundary conditions required to

7100 /AN

soive equauons 1) and (<U) are

p(x,0) = po(x), (25)
a—p(O,t) =0, (26)
0x
and p(L,t) =p,. (27)

Numerical procedure

Equation (20) applies in the wet region where I,
is unknown. Equation (19) is the corresponding
equation for the dry region with I',, set equal to zero.
These two equations are solved simultaneously for
pressure at all nodal points, then T, is

..........
calculated in the wet region from equation (19).
However, new values of Tand w, are required for the
solution of these equations, which can only be
obtained from equations (1) and (5) if I',, is known.
Thus equations (1), (5), (19), and (20) are solved
simultaneously for T, w, TI',, and p, after casting
them in implicit finite difference form, and utilizing
equations (15)-(18). New values of p, and p, are
then calculated from equations (13) and (16). New
vapor partial pressure for the dry region is obtained
from equation (15). Finaily, the air vapor mixture
velocity is calculated from equation (9) after com-
puting all the variable properties.

and
ang

Order of magnitude analysis
The obiect of this section is to estimate the
magnitudes of the dimensionless quantities govern-
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ing heat and mass transfer in porous media. This
permits selection of important terms in the governing
equations and provides guidelines for the range of
parameters required to describe general results.

The governing equations and boundary conditions
are normalized with respect to the property datum
values c,g, Do, ko, 2% and p,, the ambient pressure
P, the ambient initial conditions T, , and w,,, o, and
the length L. The definitions of the dimensionless
quantities are given in the nomenclature. The
resulting nondimensional governing equations and
the initial and boundary conditions are given below
after simplifications. These simplifications result
from the order of magnitude analyses given by
Sahota [33].

Energy
o0 o 1 ¢ _ a0 hy,_
==+t k) -——T, (28)
ot 0x*  pc,r ox ox  pc,
0(x,0) = 0o(X), (29)
06
0.0 =0, (30)
0x

1 060 S
0L D+— o (1,D) = F{) - 041D, (31)
Bi éx Bi

Equation (28) is simply the conduction equation
with a heat sink term due to evaporation of water
and applies if:

(1) p,, <« 1 which is always the case;

(2) C,i,,« 1 which will mostly be the case if u, is
not too large (> 10?) due to strong heating and if the
porous medium is not too light with very low specific
heat so as to make C, larger;

(3) C,Le« 1 which is again mostly true if the
modified Lewis number is <107 and if C, is not too
large (>>1073).

Species
_0*w Le ¢ _ ow, w,I
LeD—2 - — _a__&mn32
Fre +[ﬁmr ox '"} P
with
wa(gao) = Wa.O()z)’ (33)
Pa0,0 =0, (34)
0x
and
a1 D)+ o 8 (1,7) = 1oy (D)
Wa( at +Sh (’3)? > - Waao
for a dry surface, i
-2
_ - 14
' (1.1) = 35
or wa( ,t) Wauc,0 Rv_Ru Py = ( )
Tl -—="1=(,1)
R, L|»r

for a wet surface.
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Equation (32) neglects dw,/0f and applies under
moderately transient conditions when &W,/0t <« 102,
since the other terms in equation (32) have an order
of magnitude of 102,

Darcy’s law
_ ap
L_lm = _kD T (36)
OX
with
p(l5)= L. (37)
Mixture continuity
L i) =T 3
ra)z mUm) = m ( )
with
4,(0,1) =0. (39)

Again the transient term dp,,/¢t, being «0.1 (which
is the order of magnitude of the remaining terms),
has been neglected in equation (38).

Liquid continuity

oy =
- = —F N 40
& m (40)
with
i(%,0) = fyol). @1
Equations of state
R,T,
,30(8—’%) —PoTl0 g v B0 (42)
Pi P
and
R, T,
o=t =" @3)
Pi P
Clausius-Clapeyron
Po = Pani(0). (44)

Thus, under normal conditions of p,,« 1, C,i,,«1,
C,L,«1, and for processes which are not highly
transient, ie., dw,/0t« 100 and 0p,/0t«0.1, some
reasonable simplifications can be made in the
governing equations. Indeed these magnitudes sug-
gest a simple but accurate, analysis of the tempera-
ture field may be developed by ignoring convection
and diffusion.

Simple theory

If the pressure field is desired, even with the
simplifications above, the solution technique dis-
cussed earlier remains the same with fewer terms in
the final equations. However, if only the temperature
is required, drastic simplifications can be made. In
this case, equation (28) can be solved for 6 with the
initial and boundary conditions (29)-(31) if [, is
known. The following two assumptions are made to
evaluate I',,;:
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1. Since under physically realistic conditions, the
energy transfer due to mass diffusion is negligible
compared to that by conduction, unless the mass
fraction field is required for purposes other than
calculating the temperature field, the species equation
(32) can be dropped. Neglecting the mass diffusion
term in the energy equation implies that the
evaporation of water is unimportant as long as the
liquid does not start to boil.

2. Since energy transfer by convection is also
found to be negligible compared to conduction,
Darcy’s equation (36) and the gas-phase continuity
(38) may also be dropped if 5 and i, are not
required for any other purpose. However, it should
be noted that the local boiling point temperature of
water depends upon the local pressure and if the
local pressure is not known, the boiling point
temperature is not known. Fortunately, it is obser-
ved that the saturation temperature for water is a very
weak function of the saturation pressure, e.g., it only
rises to 450K at 10atm. So the assumption is made
that water always boils at 373 K. Strictly speaking,
this means assuming infinite Darcy’s coefficient for
the purpose of calculating the temperature field.

As a result of assumption 1, T,, in equation (28) is
put equal to zero at each node where temperature is
less than 373K in the wet region. T, is likewise zero
in the dry region. As the temperature at a wet node
approaches 373K, it cannot increase further accord-
ing to assumption 2 unless all the liquid at that node
has evaporated. Thus the temperature at all the wet
nodes is kept at 373K once this temperature is
reached. So when I',, is nonzero, which happens only
when the liquid is boiling, the temperature is known
to be 373 K. Therefore equation (28) can be used to
calculate the value of T',,. From equation (28)

_ 1] 6% 10 _ a6
tn=5 {k o rox (rk)ax} “3)
as 00/ot = 0.

Physically, equation (45) represents a simple
energy balance at a point. Usually this energy
balance is used to calculate temperature, but since
the temperature is known, the same energy balance
gives T',,. Once T, is known, a new liquid density can
be calculated at that node using equation (40). Once
the liquid density becomes zero, the temperature is
again allowed to increase with T,, = 0.

The primary advantage of this calculation tech-
nique for the temperature is its extreme simplicity.
Comparison with the complete theory shows that it
gives surprisingly accurate results. The serious
drawback is that it is incapable of predicting the
pressures which might be of critical significance in
some cases. Another drawback is that it does not
take into account condensation. However, there are a
wide variety of porous media where Darcy’s coef-
ficient is large and it is not necessary to calculate the
pressures. This technique will be found very useful in
such cases.
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RESULTS AND COMPARISONS

Results

The specific case of a one-dimensional structural
element with a uniform initial temperature equal to
the initial temperature of the gas is considered to
illustrate the results of the analysis. The element is
considered to contain uniform initial moisture
content from x = 0-0.9 and the remaining x = 0.9
—1.0 length is supposed to be dry. The assumption
of the existence of a dry region close to the surface is
physically more realistic if the structure is more than
a few days old. Two temperature histories are
utilized to represent the extremes expected for actual
fire development within structures:

(1) A long-duration, moderate-intensity fire as
defined by the American Society for Testing the
Materials (ASTM), E-119 standards as shown in Fig.

2[1].

45 -
2 N astm __—-"
540 ST
> — }
& 7
35+ =~ SURFACE
- >
w , P
m iy
= / J
- 2
é 30 /
i ' 7
a V4 -
s / , -~
w 4
= K J
251 p
Q / y
w y
5 4
] i
a
g 20 —/
z < y COMPLETE THEORY
z ! ———— DRY CASE
—-— ASTM. FIRE
— — SIMPLE THEORY
1.5 —f
1.0
000 002 0.04 0.06 0.08 0.10

NORMALIZED TIME , T sto/(?

F1G. 2. Dry and wet temperature histories at different
localities in the structural element for the ASTM E-119 fire
time—temperature curve for Bi=0.5, k, =10, and p,,

= 2.91 x 10~ 2—the other parameters are listed in Table 2.

(2) A short-duration, high-intensity (SDHI) fire
developed from the work of Magnusson and Thelan-
dersson [2] as shown in Fig. 3. The standard ASTM
and SDHI time-temperature curves can be extracted
from Figs 2 and 3 using the thermal properties of
concrete listed in Table 1 and L = 0.15m.

The thermal properties of concrete are discussed
by Sahota [33]. Table 1 summarizes the property
values used. The corresponding dimensionless quan-
tities are listed in Table 2. The temperature and
pressure fields thus generated are given in Figs 2-7.

Figures 2 and 3 show the temperature histories
given by the complete theory, the simplified analysis,



1076

4.5 r~ \

40 /‘
3 § \S.D.HJ
o
.
.
L]
@® 35 \
R
% ¥

SURFACE
£ 30 —}
i
b .
.
2.0
w
- 25
i COMPLETE THEORY

3 —————— DRY CASE
N —-— S.DHI. FIRE
—d
« 2.0_[ —— —— SIMPLE THECRY
z
x
[}
z I

1.8 +

! ==
1.0
000 002 004 008 008 fe30e]
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FiG. 3. Dry and wet temperature histories for the SDHI
fire time-temperature curve for conditions identical to
Fig. 2.

Table 1. Values of properties and dimensional parameters
used in Figs 2-7

¢, = 1140Tkg 'K ! kp=63x10""—cosm kg™!
D=275x10"°m?s"" w,, = L0

[=09 o=639%10""m?s"!
h=0—cx e=021
hp = p = 2400kgm™?

k=175Js"'m 'K~} p,=0-210kgm™>

Table 2. Values of nondimensional parameters used in Figs

2-7
Bi=0—x Sh=w
é,=10 St=0.1
D=10 =10
k=10 p=10
kp =10~ o =0-0.1
L,=43

and the corresponding dry case, at the surface (X
= 1} and two interior points {(x = 0.83 and X = 0.50)
exposed to ASTM and SDHI fires. The value of
dimensionless Darcy’s coefficient, kj, used is 10. This
corresponds to k, = 63x10"11'sm*kg~!, applic-
able to a good quality concrete. The Biot number, Bi,
is chosen to be 0.5 which corresponds to h=
57Js"'m™2K™! for L = 0.15m. The initial dimen-
sionless liquid density, p, ,, considered is 2.92 x 1072
which is equivalent to p, , = 70kgm ™3, which is the
amount of free water in a fully cured 1:2:4 concrete
mix with an initial water/cement ratio of 0.5 by
weight [33]. The temperature histories at the surface
for the simple theory in Figs 2 and 3 are almost
coincident with those for the complete theory and
are therefore not shown.
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FiG. 4. Pressure profiles at 7=008 parameterized in
Darcy’s coefficient for the ASTM fire time—temperature
curve for conditions identical to Fig. 2.
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Fi1G. 5. Pressure histories at the maximum pressure lo-

cations parameterized in Darcy’s coefficient for the ASTM

fire time-temperature curve for conditions identical to
Fig. 2.

It can be noted in Figs 2 and 3 that the
temperatures are very close to each other for all
three analyses. The temperatures for the dry and wet
cases differ little due to very low amounts of
moisture in concrete. For higher moisture systems
the curves for the wet case are expected to shift
downward making the discrepancies larger. The
small differences between the simple and complete
theories arise near the boiling point temperature of
water at atmospheric pressure due to: {1} The
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F1G. 6. Wet temperature histories, p, o= 0.1, for simplified
analysis at two locations in the structural element for the
ASTM fire time—temperature curve parameterized in the
Biot number, Bi—all other parameters are listed in Table 2.

pressure build up inside the element due to evap-
oration of water. This pressure raises the boiling
point temperature of water, so that even though the
temperature exceeds 373 K, it still remains below the
local boiling point. The simple theory assumes an
infinite Darcy’s coefficient which does not allow the
pressure to rise so that once the temperature reaches
373K, no further increase is possible until all water
is evaporated. However, larger discrepancies than
those shown in Figs 2 and 3 are not expected as
about the lowest value of k, is used in generating
these figures. Also the boiling point temperature is
not sensitive to the slight changes in pressure
expected in real systems. In addition, these differ-
ences are not critical to the subsequent stress
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F1G. 7. Dry temperature histories, p, = 0, for conditions
identical to Fig. 6.

analysis as they occur at low temperatures; (2) due
to vapor diffusion, water must evaporate at low
temperatures and act as a heat sink, keeping the
temperature down. This diffusion is more dominating
near the surface (this will be apparent by the
decrease in the temperature plateau observed closer
to the surface in Fig. 8). Since the simple theory
ignores mass diffusion completely, evaporation can-
not take place at temperatures lower than 373K.
Therefore the temperatures can also be over-
predicted by simple theory near 373K, as will be
observed in the comparison section.
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F1G. 8. Comparison of experimental and theoretical temperature histories for alumina powder—all
property and parameter values are listed in Table 3.
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The above two effects counteract each other. The
temperatures obtained by the simple analysis are
under-predicted or over-predicted near 373K de-
pending upon whether Darcy’s coefficient is low or
high, ie. whether diffusion dominates pressure
effects. These two extremes are represented by: (1)
Very porous materials, such as alumina powder with
a low rate of heating; and (2) good quality concrete
structural members subjected to a very high rate of
heating. These results and those in the comparison
section show that even in the extreme cases the
overall agreement between the simple and complete
theories is quite good. The largest difference is near
= 0.08 for x = 0.5 in Fig. 2, due to the low amounts
of moisture at low temperatures which are not
crucial to the stress analysis. It can be concluded that
as far as the temperature field is concerned, the
simplified analysis can be used with very good
accuracy provided C,i,, <« 1 and C,Le<« 1, which will
most often be true. Moreover, the errors generated
by the inaccuracies in the thermal properties and
parameters probably exceed those due to the
simplified theory, (see, for example, Fig. 8).

Figures 4 and 5 show the pressure profiles and
pressure histories respectively for the several values
of Darcy’s coefficient. The values of properties and
parameters used are the same as in Figs 2 and 3.
Figure 4 is drawn at a dimensionless time of 0.08, at
which the maximum pressures were observed. The
most probable value of k, for a good quality
concrete is 10. Therefore pressures of the order of 10
atmospheres can be expected in concrete elements
exposed to fire. Such high pressures may cause
spalling. Fortunately microcracking and cracking,
which invariably occurs in concrete, makes it more
permeable. This increases the Darcy’s coefficient and
therefore causes the moisture to flow more freely,
thereby avoiding building up of such high pressures.
Values of the order of 10* for k,, are found in low
grade concretes or fire clay bricks. Darcy’s coefficient
x 10% corresponds to very porous materials such as
sand and alumina powder. In most situations (except
for small D with large k, and k with high rate of
heating) the pressure peaks are observed at the
dry—wet interface which is clearly defined in the
computer results. The origin side of the pressure
peaks is the wet region where the air—vapor mixture
flows inward and vapor condensation takes place.
The surface side of the pressure peaks is the dry
region. The air—vapor mixture in this region moves
towards the surface. It is interesting to observe the
negative pressure near the center of the element for
kp, = 10. This indicates specie diffusion dominating
pressure induced mixture flow. Due to a low value of
kp, there is much resistance to the flow of the
air—vapor mixture towards the center. However, due
to the steep gradients in the mass fractions, the air
diffuses towards outside (or the vapor diffuses inside)
at high speeds relative to the mass average velocity
of the air—vapor mixture. This causes the vapor to
condense faster than it is replenished by the arrival
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of fresh mixture, thereby producing the negative
pressures.

Figure 5 shows the pressure histories for these
values of kj,. The different locations were chosen
corresponding to where the maximum pressures
occurred. The maximum pressure should occur at a
point reasonably far from the surface so that there is
enough resistance to the flow of gases towards the
surface to maintain the pressure. At the same time
the point should be close enough to the surface so as
to experience a reasonably high rate of heating. So
there is some optimum location for peak pressures to
occur corresponding to each value of Darcy’s
coefficient. Keeping the other parameters constant,
one observes from Fig. 5 that decreasing kj, shifts the
point of maximum pressure slightly towards the
inside and increases its magnitude.

It can be concluded from Figs 4 and 5 that the
pressure may be important in the heat and mass
transfer calculations in porous media of low Darcy’s
coefficient, k< 103, subject to increased surface
temperatures. However for kj, > 10, infinite Darcy’s
coefficient may safely be assumed.

Figures 6 and 7 show the temperature histories at
two locations for wet and dry cases for the more
commonly recognized ASTM fire. The simplified
analysis was used to obtain Fig. 6 while Fig. 7, for
comparison, gives the heat conduction model re-
sults. The initial dimensionless liquid density p,,
used in Fig. 6 is 0.1. This is about the maximum
amount of moisture found in concrete. Thus Figs. 6
and 7 represent the two extreme cases of initial
moisture content. The Biot number, Bi, is varied
from zero to infinity to obtain general limits; note
that Bi does not significantly affect the temperature.
Results corresponding to other Bi have thus not
been plotted. The curves for Bix 10 pass almost
through the middle of Bi = 0 and Bi = «. For Bi
<0.1 the assumption of Bi = 0 is quite accurate. For
Bi 2 100, the temperature boundary condition might
safely be assumed. This small variation of tempera-
tures with Bi indicates that radiation may dominate
in fires since even for Bi = 0 the temperatures are not
much different from their maximum values.

For the two extreme cases of maximum and zero
liquid densities, respectively, the wet and dry results
are not as close to each other as in Figs 2 and 3. The
discrepancy suggests that the dry temperature may
not always suffice for calculating the temperatures.
In addition, had the results for the complete theory
been also plotted in Fig. 6, one would have observed
excellent agreement with the simple theory except for
small discrepancies near 373K. The temperature
plateau in Fig. 6 for Bi = 0 and x = 0.83 is observed
to be slightly longer than for Bi = . This indicates
a slower rate of evaporation of water due to a slower
local heating rate.

Comparisons
Figure 8 shows a comparison between this
complete analysis, this simplified analysis, and the
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experimental data of Min and Emmons [30] for
alumina powder. The curves labeled 1/4in and 1/2in
indicate the distance of the points beneath the
surface. The experiments were performed on a 2§in
long tube closed from one end and packed with
alumina powder. Known quantities of water were
added and the tube heated from the open end with
electric lamps. The values of properties and para-
meters used in generating Fig. 8 are as recommended
by Min and Emmons and are listed in Table 3. The
temperature specified boundary condition is used.

Table 3. Values of properties and parameters used in

Fig. 8

¢, = (PsCps+P1C)/P ky=075]s"'m 1K"!
C,,S=837Jkg_lK_l L =0054m

¢, =4187Tkg 'K W, = 1.0
C=23x10"°m?s ! =075
Hp=w p=ps+p

k = k, in dry region Pro=150kgm™3

= 2k, in wet region ps = 1000kgm 3

kp=642x10"7sm’kg™!

The mixed boundary condition parameters were
found unsatisfactory, since much lower surface
temperature histories were obtained than reported
for both dry and wet runs. Lack of agreement with
the simple, analytic, dry run suggests incorrect
parameters. The experimental surface temperature
history, shown in Fig. 8, is not in [30] and was
obtained by private communication. According to
Min, the thermocouple at the surface may have
overestimated the temperature due to direct ra-
diation from the lamps and improper contact with
the surface. However, the difference between the
actual and the recorded surface temperatures is
assumed less than the difference between the actual
and the mixed boundary condition predicted surface
temperature. Therefore, the measured surface tem-
perature boundary condition was used.

Both the complete and simple theories over-
predict the temperatures slightly. However, the
agreement between the two theories is again excel-
lent. As discussed earlier, this case being the high
porosity extreme, the temperature by the simple
theory is over-predicted when the liquid is boiling
because the simple theory ignores diffusion. When all
the liquid is evaporated at a given point, the simple
and complete theories converge. The discrepancy
between the theoretical and the experimental results
is probably due to an inaccurate surface con-
dition. It is unlikely to be due to the failure of
assumptions common to both the complete and
simplified analyses, such as, neglecting the movement
of the liquid water and the assumption of no bound
water.

CONCLUSION
An analysis is developed for one-dimensional or
axi-symmetric heat and mass transfer in a wet,
porous medium subject to unsteady, nonlinear,
mixed, boundary conditions. The resulting equations
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have been solved simultaneously by an implicit finite
difference technique. The numerical computations
take into account condensation of the vapor in both
dry and wet regions. The results clearly indicate the
existence of a dry-wet interface even though no such
interface has been postulated. When the pressures
are not required, a simplified technique for calculat-
ing the temperature has been developed neglecting
heat transfer by convection and mass diffusion. This
analysis is valid for C,u,«1 and C,Le«!. The
results so obtained compared very well with the
complete analysis. Comparison has been made
between wet and dry cases, with the practical
conclusion that for typical concrete, the dry tempera-
ture field well approximates the wet field.

An order of magnitude analysis was performed on
the identified, general, governing nondimensional
groups. Results have been obtained for Biot
numbers varying from zero to infinity for the
American Society for Testing Materials E-119
time—temperature curve. The agreement between the
simplified and complete analyses, for the prediction
of temperature, was found to be so good that the
general results were plotted using only the simple
theory. Comparison is made with experimental data
on alumina powder. The agreement is acceptable.

Sumple heat conduction calculations appear to
suffice for moisture contents normally found in
concrete. However, if the moisture content in
concrete is high (p, o = 0.05), as will be the case in a
new structure with high initial water/cement ratio,
the actual temperature may be sufficiently below that
predicted by a dry heat conduction model so as to
require a wet analysis. If Darcy’s coefficient is low
(kp < 10°), the pressure developed inside the element
might be important to the stress analysis. However,
in most situations, pressures which are dangerous to
the structure (> 10 atmospheres) are not expected
due to microcracking and cracking.

If the pressure is not required, the simplified
analysis may always be used to predict the tempera-
ture field in the wet case. An exception to this will be
when C,i,, 2 1 or C,Lez 1 which rarely happens in
physically realistic situations. Another unimportant
exception is at low temperatures, when the tempera-
ture inside the element remains below 373 K for most
of the time and the evaporation takes place due to
mass diffusion only. There is no difficulty in principle
to extending the analysis to multi-dimensions. How-
ever, the mathematical manipulations will be much
more complex. The analysis can be modified with
few changes to solve a variety of other heat and mass
transfer problems outlined in the Introduction.
Investigation should be made regarding the impor-
tance of bound water. If the adsorption characteris-
tics of the medium are known, it is simple to extend
the present theory to do so. However, it is claimed
by Sahota [33] that the maximum amount of bound
water expected in concrete is less than 100kgm 3.
As seen in the results section, this amount is not
enough to significantly affect the temperature field.
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The assumption of no liquid movement was made
in the development of the present theory. This
assumption is probably very good for low and
medium pressures. However, for very high pressures
it is questionable whether the liquid does not move,
particularly for high moisture content when the
liquid in the different pores is interconnected. Such
movement would not be difficult to incorporate. The
continuity equation for the liquid will have one more
term, which can be included in the subsequent
calculations knowing the value of Darcy’s coefficient
for the liquid. A corresponding slight change would
also occur in the general energy equation. More
experiments on concrete are needed to provide
comparisons with the present theory. These experi-
ments should determine the temperature, pressure
and moisture fields, and evaluate Darcy’s coefficient
for gases in concrete more accurately. Finally, some
technique of calculating a pseudo thermal con-
ductivity of wet porous media may be developed
from the present work so that mass transfer effects
could be included via this pseudo conductivity, k(T).
Simpler conduction solutions to heat transfer pro-
blems in porous media might then suffice.
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TRANSFERT DE CHALEUR ET DE MASSE DANS DES MILIEUX
POREUX SOUMIS AU FEU

Résumé—On obtient la solution transitoire de I'écoulement biphasique et binaire dans des structures
poreuses de béton, a une seule dimension ou axisymétrique, exposées a des conditions aux limites mixtes,
non-linéaires et dépendant du temps. Les mécanismes considérés dans la théorie sont: conduction
thermique dans tous les composants, diffusion moléculaire des composants gazeux, écoulement gouverné
par la pression et obéissant a la loi de Darcy. Les équations de transfert thermique et massique sont
résolues numériquement par une méthode implicite aux différences finies. Une technique simplifiée pour
calculer avec I'analyse compléte. Les champs de température pour les cas secs et humides ne different pas
sensiblement des quantités normales d’humidité dans le béton. On donne des résultats généraux pour
deux cas limites de feu: la courbe temps—température de I’American Society for Testing and Materials E-
119 et une courbe de courte durée et de grande intensité. Des comparaisons entre expérience et théorie
sur les champs de température sont faites pour une poudre d’alumine humide et on obtient un bon
agrement. On discute les applications a des feux sur des structures et on considére une variété d’autres
problémes de transfert de chaleur et de masse.

WARME- UND STOFFUBERGANG IN POROSEN MEDIEN- DIE FLAMMEN AUSGESETZT
SIND

Zusammenfassung—Es wird die instationdre Losung angegeben fiir die Zwei-Phasen-, Zwei-
Komponentenstromung in eindimensionalen oder axialsymmetrischen pordsen Beton-Strukturen mit
zeitabhangigen, nichtlinearen, gemischten Randbedingungen. Die grundlegenden Mechanismen, die in der
Theorie betrachtet werden, sind: Warmeleitung durch alle Komponenten, die molekulare Diffusion der
gasformigen Komponenten und erzwungene Konvektion infolge einer Druckdifferenz die durch das
Darcy’sche Gesetz beschrieben wird. Die malgeblichen Wirme- und Stoffiibergangsgleichungen werden
mittels eines impliziten finiten Differenzenverfahrens numerisch gelost. Zur Berechnung des Temperatur-
feldes wurde eine vereinfachte Methode entwickelt; die Resultate lassen sich gut mit denen der
vollstandigen Ldsung vergleichen. Die Temperaturfelder fiir den trockenen und feuchten Fall differieren
nicht wesentlich bei normalem Feuchtigkeitsgehalt des Betons. Es wurden allgemeine Resultate fiir zwei
Grenzfille der Feuerentwicklung angegeben: die Zeit-Temperatur-Abhangigkeit E-119 der American
Society for Testing and Materials und eine Kurzzeit-Hockintensitats-Zeit-Temperatur-Abhingigkeit. Es
werden experimentell und theoretisch bestimmte Temperaturfelder in einem pordsen System aus feuchtem
Tonerdepulver verglichen. Die Ubereinstimmung ist gut. Anwendungen auf Brinde in Gebduden und
eine Vielzahl anderer Wirme- und Stoffiibergangsprobleme werden diskutiert.

TEMJO- U MACCOIIEPEHOC B NMNOPUCTHIX CPEJAX TTPU OBXHUIE

Annoraums — [Tony4eHO HeCTalHOHAPHOE pelleHne Uis ABYX(Pa3HOro ABYXKOMIIOHEHTHOrO TEYEHHS
B OJHOMEPHBIX WIH OCECHMMETPHYHBIX MOPHCTHIX GETOHHBIX CTPYKTYpax NMPH HAJTHYMM 3aBHCALIAX OT
BPEMEHH HEJIHHEHHBIX CMELIAHHBIX TPAHHYHBIX YCIOBHIA. B TeopeTHYeCKOM aHanu3e yuTEHB OCHOBHEIE
MEXaHM3MBI MPOLECCa: TEMIONPOBOAHOCTh BCEX KOMIMOHEHTOB CHCTEMBI, MOJIEKyJsipHas auddysus
ra3oBbiX KOMIOHEHTOB H BBI3BIBAEMBIH Pa3HOCTBIO AABJCHMH KOHBEKTHBHBIH IOTOK, ONHCBHIBAEMBIi
3akoHoM Jlapcu. OCHOBHBbIE ypaBHEHHS TEMJIO- M MECCONEPEHOCA PeiliajiiCh YHCIEHHO C TIOMOUIBIO
HESBHOH KOHEYHO-Pa3HOCTHOH cxeMhl. PaszpaboTaH npocToit MeTon pacué€ra TeMnepaTypHuIX nojeit H
NOJy4€HO XOpOIllee COBMAJECHHE C pe3yJbTaTaMH I[IOJJHOrO aHanW3a. Pacnpenenenus temnepatyp
B CYXMX M BJIaXKHbIX oOpa3suax B ciiyyae HOpMaJIbHOTO COJEPXKaHHs Blark B 6eToHe GBUIH B OCHOBHOM
onuHakoBbiMH. [IpuBeneHn! obiime pesynbTaThl A8 [BYX MNpEAeNbHBIX Cly4aeB oOXHra: KpuBas
3aBHCHMOCTH TEMIIEPATYPbI OT BpeMeHH (AMepHKaHCKoe obIlecTBO HCHbITaHM M MaTepHanos E-119)
M KpHBasi 3aBHCHMOCTH TEMIIEPAaTypbl OT BPEMEHH B Cllyyac HeOGOJNBIIOH MIHTENLHOCTH M GOJbLIOH
HHTEHCHBHOCTH mpouecca. [TpoBeneHo cpaBHEHME MEXAY JIKCHEPHMEHTAJIbHBIMH M TEOPETHYECKHMM
3HAYEHUAMH pacnpele/IeHUi TeMnepaTyp BO BJaKHOM INIOPHCTOM aJIIOMHHHEBOM nopouuke. [TonyyeHo
Xopolliee coBNajAeHde JaHHbIX. OOCYHIal0Tcs BO3MOXHOCTH AHAJIOTHYHBIX HCCIIEJOBAHHI NS CTPYK-
TYPHOTO OOXHIa H psfa APyrux npobJieM Tem1o- 1 MacconepeHoca.
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