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Abstract-The transient solution of two-phase, two-component flow in one-dimensional or axi-symmetric 
porous concrete structures exposed to time-dependent nonlinear mixed boundary conditions has been 
obtained. The basic mechanisms considered in the theory are: heat conduction through all the 
components, the molecular diffusion of the gaseous components, and the pressure driven convective flow 
governed by Darcy’s law. The governing heat and mass transfer equations are solved numerically by an 
implicit finite difference scheme. A simplified technique for calculating the temperature field is developed 
and the results compare favorably with the complete analysis. The temperature fields for dry and wet 
cases do not differ significantly for normal amounts of moisture content in concrete. General results are 
given for two limiting fire histories, the American Society for Testing and Materials E-l 19 
time-temperature curve and a short-duration, high-intensity time-temperature curve. Comparisons are 
made between experimental and theoretical temperature fields in a wet, porous, alumina powder system. 
Good agreement is obtained. Applications to structural fires and a variety of other heat and mass transfer 

problems are discussed. 

NOMENCLATURE 

a, b, c, d, coefficients in equation (20); 
A, B, C, constants in Clausius-Clapeyron 

equation ; 
hL/k, Biot number; 
specific heat at constant pressure; 

[Jkg-‘K-l]; 
cP/cPo, dimensionless specific heat 
at constant pressure; 
~,,,cpm/(~cp), heat capacity ratio ; 
diffusion coefficients for Fick’s 
law for air-vapor mixture [m’ s - ‘I; 

DID,, dimensionless diffusion 
coefficient ; 
effective shape factor for 
radiation ; 
8, + 0; St/B& fire temperature group; 
convective heat transfer 
coefficient [J s- ’ m-’ K-l] ; 
mass transfer coefficient [kgs- ’ m-‘1 ; 
heat of evaporation of water [J kg- ‘1; 

h,-J(c,, TJq,), dimensionless heat 
of evaporation of water; 
thermal conductivity [Js-’ m-l K-l]; 

k/k,, dimensionless thermal 
conductivity ; 
Darcy’s coefficient [m3 s kg-‘] ; 
k,p,/u,, dimensionless Darcy’s 
coefficient ; 
length for plane geometry and outer 
radius for cylindrical geometry [m] ; 
Do/a,, modified Lewis number; 
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R 

Sh, 
St, 

t, 

t, 
T, 

4 
4 

wit 

wi, 

X, 

X, 

pressure [N m - ‘1; 

p/p,, dimensionless pressure; 
1 for geometry, and x or X 
for cylindrical geometry ; 
gas constant per unit mass [J kg-’ K-’ 
h&/(p,D), Sherwood number; 
of LTfy,/k, modified Stefan number; 
time [s] ; 
tcr,/L*, dimensionless time; 
absolute temperature [K] ; 
velocity [m s- ‘I; 

uL/cq,, dimensionless velocity ; 
Pi/Pm, mass fraction of specie i 
with respect to the density 
of air-vapor mixture; 

wilwaa2,07 ratio of the mass 

fraction of specie i to 

the initial ambient 
mass fraction of air; 
distance [m] ; 
x/L, dimensionless distance. 

Greek symbols 

4 k/(pc,), thermal diffusivity 

[ I> m2s-1 

% GC/CQ, dimensionless thermal 
diffusivity ; 

ri7 production rate of specie i per 

ri> 

unit total volume [kge3 s-l]; 

riL’/(p,Cr,), dimensionless rate of 
production of special i ; 

6 void volume/total volume, porosity; 
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8, T/Ts.o, dimensionless temperature; 

P? mass per unit total volume, 
density [kg m-“1 ; 

P? p/pa, dimensionless density ; 
* 

Pi ) mass of specie i per unit volume 
of specie i [kgmm3] ; 

c, Stefan-Boltzmann constant 
[Js-‘m -2 K-4]. 

Subscripts 

; 

air ; 
fire ; 

6 specie i; 

1, liquid ; 
m, air-vapor mixture, 

.s, solid ; 
sat, saturation point for vapor; 

h;: 
vapor; 
initial condition or datum; 

ambient. 

INTRODUCTION 

AN IMPORTANT problem in fire safety is determining 

the structural integrity of a building after a severe 
fire. Not all pertinent damage is visible, so it is 
necessary to predict the internal stresses which result 

from any given fire. The first step is to predict the 
thermal behaviour of the structure when subjected to 
a known fire. This thermal response then determines 

the internal stresses and therefore the structural 
safety. 

The problem is complicated by the presence of 
moisture in concrete. The water inside the structure 
evaporates due to heating which in turn generates 
high pressures and strong concentration gradients. 
High pressure causes the gases (air and water 
vapour) to flow toward the surface. In addition, 
ambient air diffuses into the concrete structure to 
balance the concentration gradients developed dur- 
ing evaporation. Mass diffusion of water vapour also 
enhances the evaporation rates. The fields are 
described by the overall energy equation, a con- 
tinuity equation for each component, Darcy’s law for 
each phase, an equation of state for each gaseous 
component, and the transport property relations. 

The study thus carried out has diverse industrial 
applications. Multiphase flow is of special interest to 
the petroleum industry due to its applicability to 
secondary petroleum recovery. Drying processes and 
transport of pyrolysed combustibles influence the 
burning of most natural, some synthetic polymers. 
Heat and mass transfer plays an important role in 
the stress calculations for the storage of radioactive 
waste in concrete enclosures. The flow of cavity gas 
following an underground nuclear explosion also 
falls in the same category. In general, the present 
analysis is applicable to any heat and mass transfer 
problem with phase change in a porous medium. 
With some modifications, the solution technique can 
be extended to heat transfer problems with internal 
chemical reactions. 

The problem considered here is a concrete struc- 

ture surrounded by a known fire with an external 
bounding surface as shown in Figs. la and b. The 
analysis is limited to one-dimensional or axi- 
symmetric geometry due to the complexity of the 
problem. The simultaneous solution of the unsteady 
differential equations for porous media is required. 
This solution then serves as an input to the 

structural analysis. Since most structural effects 
occur after flashover, only this time period will be 
considered. As in the standard test methods [l, 21, 
the fire is described by a specified gas phase 
temperature history. The interaction between the fire 
and the structural element is described by a view 
factor, total emissivities of the fire, the element 
surface, the surrounding compartment surfaces, and 
a convective heat transfer coefficient. Sahota and 
Pagni [3] obtained a quasi-analytic solution of a 
two-dimensional conduction problem with time- 

dependent, norlinear, mixed boundary conditions 
ignoring property variations and moisture transfer. 
Whether these effects dominate depends on the exact 
application. Bresler and co-workers [4-61 have 
approached the conduction problem, along with the 
internal stress problem, using the finite element 
method. Comparisons have been reported [3] with 
their numerical solutions and experimental data. 

Most of the previous work for heat transfer in 

porous media is for single phase, either liquid or gas, 
flowing through the medium [7713]. Luikov defined 
a system of coupled differential equations on the 
basis of thermodynamics of irreversjble processes 
[I41 and presented a set of solutions for several 
geometries and boundary conditions [15]. The 
validity of linear flux-force equations based on 
nonequilibrium thermodynamics in a closed system 
at steady state conditions, was investigated experim- 
entally [16]. Chase et al. [ 171 solved a linear system 
of differential equations by making many simplifying 
assumptions for the case of regenerator type mass 
exchangers. Kumar [IS] extended the variational 
formulation technique based on local potential to 
simplified nonlinear heat and mass transfer equa- 
tions in a porous medium. Gupta [19], following 
Kumar, applied local potential and integral tech- 
niques by defining a moving evaporation front which 
divided the system into dry and wet regions. Murty 
er al. [20] solved the mass diffusion equation in a 
partially liquid filled porous matrix by Laplace 
transforms and contour integration. Kozdoba and 
Chumakov [21] obtained heat and mass transfer 
equations with an allowance for the difference 
between the coolant (air-vapor mixture) and the 
skelton (porous medium) temperatures for transpi- 
ration cooling. Solution techniques based on finite 
integral transforms [22] and the finite element 
method [23] have been obtained. Some experimental 
results pertaining to porous media such as, cotton 
[24], porous bronze [25], and the materials com- 
monly used as protective coverings for steel in 
building construction such as, clay, concrete, gyp- 
sum, lime mortar. can be found in [26]. 
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Most of the literature cited above does not take 
into account the pressure build up inside the porous 
medium due to evaporation and subsequent move- 
ment of the fluids. Rubin and Schweitzer [27] 

considered the flow of liquid from a reservoir at high 
pressure entering a porous medium which is heated 
from the other side causing evaporation of the liquid 
within the medium. But they ignored mass diffusion. 
Morrison [28] made an elaborate analysis applied to 
the cavity formed by underground nuclear ex- 
plosions. Mass diffusion and heat conduction 
through the porous medium were neglected. Harmathy 

[29] reported heat and mass transfer caluclations at 
low temperatures for fire clay bricks and compared 
the results with experiments. Min and Emmons [30] 
presented an elegant but simple analysis presup- 
poposing a dry-wet interface, and compared the results 
with their experimental data on packed aluminum 
oxide powder. Saito and Seki [31] analyzed a one- 

dimensional moist porous material problem neglect- 
ing mass diffusion, postulating a dry-wet interface, 
and neglecting the volume occupied by the liquid. 

In the present analysis, all the terms are initially 
included in the applicable differential equations. No 
dry-wet interface is postulated; however, the results 
obtained predict such an interface. The advantages 
of this are: (1) The problem of locating the dry-wet 
interface is eliminated, which is particularly useful in 
multi-dimensional systems; (2) no boundary con- 
ditions at the interface are required; and (3) the 
analysis is applicable to both kinds of problems, with 
and without inside discontinuities. 

All the previous work known to the authors 
ignored the condensation of the vapor in the dry 
region. This condensation is possible if the tempera- 
ture in the wet region exceeds the temperature in the 
dry region, as could be the case during the 
temperature fall portion of the fire time-temperature 
curve. The present analysis takes into account this 

phenomenon; however, it is not observed to be of 
critical significance. 

Finally, an attempt has been made to simplify the 
governing equations by nondimensionalizing the 
system and comparing the relative magnitude of each 
term. A simple technique for caluclating the tempera- 
ture field is then developed and found to accurately 
describe systems of practical import. When the 
pressure field calculation is not required, which is 
often the case, this simple technique is especially 
convenient. 

THEORETICAL FORMULATION 

Assumptions 
The following assumptions are made for the 

theoretical model: 
1. Local thermodynamic equilibrium exists. Ac- 

cording to Morrison [28] the response time for local 
heat transfer between the fluid and the solid is 
several orders of magnitude smaller than the times of 
interest. Therefore the temperatures of the fluid and 
solid are the same at each point and the assumption 

of local thermodynamic equilibrium is valid. This 
makes a heat transfer model between fluid and solid 
unnecessary and provides an unambiguous definition 

of the temperature at a point. 
2. Liquid-vapor equilibrium exists in the presence 

of free water, which makes the partial pressure of the 
vapor equal to the saturation pressure. A more 
accurate expression for the partial pressure can be 
used if the adsorption characteristics of the medium 
are known. This assumption is not a necessary 
feature of the theory and is made only because it is 
observed to be the case. 

3. Movement of the liquid is neglected. This also 
is not an inherent feature of the theory and the 
liquid-movement can easily be incorporated given a 
Darcy’s coefficient for the liquid. But the value of 
Darcy’s coefficient for the movement of the liquid is 
so small compared to that of the gases, that the 
liquid movement is negligible. This is further sub- 
stantiated by Harmathy [29] and Min and Emmons 
[30] who claim that the liquid, particularly at low 

moisture content, is present in the pendular state, 
that is, the liquid in different pores is not 
interconnected. 

4. Evaporation of chemically and physically 
bound water is neglected. This assumption is again 
not a necessary feature of the theory. It is made in 
the absence of the detailed information on bound 
water kinetics. 

5. Darcy’s law with variable coefficient holds for 

gases. Usually, this law holds for steady flows under 
isothermal conditions. Schweitzer [32] modified it 

for nonisothermal conditions and noted his result 
simplified to the ordinary Darcy’s law with variable 
coefficient if the viscosity was not a strong function 

(0) PLANE GEOMETRY 

UNIFORM FIRE 

tb) AXI-SYMMETRIC GEOMETRY 

FIG. 1. Alternative system geometries. 
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of temeperature. Rubin and Schweitzer [27] also 
modified Darcy’s law for transient problems. Again 
they found the additional term to be negligible for all 
practical purposes due to small values of the 
Reynolds number encountered in porous media. 

6. Air and water vapor are treated as ideal gases. 
All systems of interest are far from the critical point. 

Analysis 

The system considered is shown schematically in 
Figs la, b. The spatial uniformity of the fire 
introduces symmetry at the center of the structural 
element with zero flux conditions at this interior 
boundary. The results presented here use these 
conditions; however, the analysis can be easily 
modified for asymmetric problems. 

The following governing equations and boundary 
conditions describe the complete system [33]. The 
final energy equation, after incorporating some 
simplifications involving mass conservation, is 

where k, p, cP, and CI are the overall values. The 
initial and boundary conditions are 

?“(x, 0) = T,(x), (2) 

E(O,t) = 0, (3) 

-kf&t) = h[T(LJ)- T,(t)] +fa[T4(L,t)- T/4(t)]* 

(4) 

I The species equation fur air is given below. The one 
for vapor is omitted as oniy one species equation is 
needed if the overall air-vapor continuity is included. 

aw 
-2 = E$+ 
at I j;l;&(rpmLq4, 

m 1 

The initial and boundary conditions are 

w.(x, 0) = w,&), (6) 

awlI -.;; (0, t) = 0. (7) 

-p,D~tLt) = Mw,(L,t)-w,,(t)] (84 

for dry surface, and 

for wet surface. 

and P. J. PAGNI 

Equation (8b) has been obtained from the equa- 
tions of state for vapor and air. When the surface is 
wet, the partial pressure of the vapor at the surface is 
equal to the saturation pressure. Thus w,(L,t) is 
explicitly known in that case. The velocity of the 
air-vapor mixture is given by 

? 
u, = -k,g, 

with the boundary condition 

P(L r) = Pm. 

The conservation of gas phase mass gives 

with the boundary condition 

U,(O, t) = 0. 

The continuity equation for the liquid is 

i!!Lf =-r 
at 1 m’ 

with only the initial condition required, 

P,(X,O) = Pt.&). (14) 

Equations of state for the vapor and the air-vapor 
mixture are 

(15) 

(16) 

Since liquid and vapor are assumed in equilibrium, 

P. = Pw m (17) 

in the presence of liquid water. An analytic ex- 
pression for pmt is obtained by Sahota [33]. The 
result is 

, (18) 

where A=3.18~1~~Jkg-‘,B=2470Jkg~‘K-’ and 
C = 6.05 x 10z6 N rn-‘. This set of equations describes 
the heat and mass transfer problem in a porous medium. 
In summary, the equations to be solved are: energy, 
species equation for air, Darcy’s law, mixture gas 
continuity, liquid continuity, two equations of state, 
and Clausius-Clapeyron equation (phase equilib- 
rium). The unknowns are: temperature, air mass 
fraction, pressure,mixture mass average velocity, liquid 
density, mixture production rate, mixture density, and 
vapor partial pressure. 

These eight governing equations with eight un- 
knowns define the system completely. It is com- 
putationally convenient to recast these equations in 
terms of the pressure and to explicitly eliminate the 
evaporation term which does not have a simple 
Arrhenius type expression but rather is obtained 
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implicitly from the liquid-vapor equilibrium assum- 
ption. Differentiating equation of state (16) with 
respect to t and simplifying by making use of 
equation (13); substituting for C&,/C% from the 
resulting equation, u, from equation (9), and dp,/dt 
from equation (13) into equation (1 l), one obtains, 

(19) 

The above equation applies irrespective of whether 
the region is dry or wet. However, if the region is 
wet, I?,,, in equation (19) is not explicitly known. 
Thus it is useful to eliminate r,,, from equation (19), 
and obtain an equation applicable in the presence of 
liquid. The result- is _ _ 

d”P=.a2P+&_c 
at ax2 ax ’ 

where 

a=D+pk, 

) 

(20) 

(21) 

(22) 

- 
1 , w,(R,--RAP: aT -- 
T’ R, P, 1 i at ’ 

and 

P: PAL 
+-- 

P” PC, 

(23) 

(24) 

with the primed symbol above defined as p: 
= dp,/dT The details of the derivation of equation 
(20) are given by Sahota [33]. The important 
features of equation (20) are that it holds in the wet 
region so that the liquid-vapor equilibrium assump- 
tion is satisfied, and it does not contain the 
evaporation term T,,,. So this equation can be solved 
for the pressure field in the wet region. Once the 
pressure is known, T,,, is calculated from equation 

(19). 
The initial and boundary conditions required to 

solve equations (19) and (20) are 

PC% 0) = P,(X), (25) 

Z(O, t) = 0, (26) 

and PW*t) = Pm. (27) 

Numerical procedure 
Equation (20) applies in the wet region where I-,,, 

is unknown. Equation (19) is the corresponding 
equation for the dry region with r,,, set equal to zero. 
These two equations are solved simultaneously for 
pressure at all nodal points, and then r,,, is 
calculated in the wet region from equation (19). 
However, new values of Tand w, are required for the 
solution of these equations, which can only be 
obtained from equations (1) and (5) if I-,,, is known. 
Thus equations (1) (5), (19), and (20) are solved 
simultaneously for T, w,, r,, and p, after casting 
them in implicit finite difference form, and utilizing 
equations (15)-(18). New values of p, and pm are 
then calculated from equations (13) and (16). New 
vapor partial pressure for the dry region is obtained 
from equation (15). Finally, the air vapor .mixture 
velocity is calculated from equation (9) after com- 
puting all the variable properties. 

Order of magnitude analysis 
The object of this section is to estimate the 

magnitudes of the dimensionless quantities govern- 
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ing heat and mass transfer in porous media. This Equation (32) neglects a@,/& and applies under 
permits selection of important terms in the governing moderately transient conditions when i;W,/r?i<< lo’, 

equations and provides guidelines for the range of since the other terms in equation (32) have an order 

parameters required to describe general results. of magnitude of 10’. 

The governing equations and boundary conditions 
are normalized with respect to the property datum 

values cpO, D,, k,, c(~ and pO, the ambient pressure 
p,, the ambient initial conditions 7”,, and w,,,~, and 

the length L. The definitions of the dimensionless 
quantities are given in the nomenclature. The 

resulting nondimensional governing equations and 
the initial and boundary conditions are given below 
after simplifications. These simplifications result 
from the order of magnitude analyses given by 

Sahota [33]. 

Darcy’s law 

with 

1- 
u, = -k “” 

D is ’ 
(36) 

P(l,F) = 1. (37) 

Mixture continuity 

$Yj (r&k) = r,, (38) 

with 

U,(O, t, = 0. (39) 

Again the transient term 6p,,,/& being ~~0.1 (which 
is the order of magnitude of the remaining terms), 

has been neglected in equation (38). 

Energy 

l3Q S2Q 
_ 

_=2s+&!&Qg_h,,~,, 
at r (7X ax pc, 

(28) 
pc P 

Q(x,O) = Q,(X), (29) 

$0, t) = 0, (30) 

Q(l,~)+~~(l,i)=F(T)-;Q”(1.i). (31) 

Equation (28) is simply the conduction equation 
with a heat sink term due to evaporation of water 
and applies if: 

(1) p, << 1 which is always the case; 
(2) C&i,,, K 1 which will mostly be the case if ii, is 

not too large (x 10’) due to strong heating and if the 
porous medium is not too light with very low specific 

heat so as to make C, larger; 
(3) C,Le<< 1 which is again mostly true if the 

modified Lewis number is < 10’ and if C, is not too 

large (>> 10e3). 

Species 

with 

^- 
gqo, t) = 0, 

and 

for a dry surface, 

or 

for a wet surface. 

Liquid continuity 

(5% 
: = -r,> 
?t 

(40) 

with 

P,(KO) = P,.,(.u). (41) 

Equations of state 

= y (1 - w~,~,~G~)&,Q, (42) 
n 

and 

~oRr,tTf o - 
‘p,Q. 

P, 
(43) 

Clausius-Clapeyron 

P, = L(Q). (44) 

Thus, under normal conditions of Pm<< 1, C,U,cc 1, 
C,.L,<< 1, and for processes which are not highly 
transient, i.e., &,/&<< 100 and aj,,,/at x 0.1, some 
reasonable simplifications can be made in the 
governing equations. Indeed these magnitudes sug- 
gest a simple but accurate, analysis of the tempera- 
ture field may be developed by ignoring convection 
and diffusion. 

Simple theory 

If the pressure field is desired, even with the 
simplifications above, the solution technique dis- 
cussed earlier remains the same with fewer terms in 
the final equations. However, if only the temperature 
is required, drastic simplifications can be made. In 
this case, equation (28) can be solved for Q with the 
initial and boundary conditions (29)-(31) if Tm is 
known. The following two assumptions are made to 
evaluate Tm: 
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1. Since under physically realistic conditions, the 
energy transfer due to mass diffusion is negligible 
compared to that by conduction, unless the mass 
fraction field is required for purposes other than 

calculating the temperature field, the species equation 
(32) can be dropped. Neglecting the mass diffusion 
term in the energy equation implies that the 
evaporation of water is unimportant as long as the 
liquid does not start to boil. 

2. Since energy transfer by convection is also 
found to be negligible compared to conduction, 

Darcy’s equation (36) and the gas-phase continuity 
(38) may also be dropped if @ and U, are ‘not 
required for any other purpose. However, it should 
be noted that the local boiling point temperature of 

water depends upon the local pressure and if the 
local pressure is not known, the boiling point 

temperature is not known. Fortunately, it is obser- 
ved that the saturation temperature for water is a very 

weak function of the saturation pressure, e.g., it only 
rises to 450K at IOatm. So the assumption is made 
that water always boils at 373 K. Strictly speaking, 
this means assuming infinite Darcy’s coefficient for 
the purpose of calculating the temperature field. 

As a result of assumption 1, f, in equation (28) is 
put equal to zero at each node where temperature is 

less than 373 K in the wet region. i=,,, is likewise zero 
in the dry region. As the temperature at a wet node 
approaches 373 K, it cannot increase further accord- 
ing to assumption 2 unless all the liquid at that node 
has evaporated. Thus the temperature at all the wet 
nodes is kept at 373K once this temperature is 
reached. So when rrn is nonzero, which happens only 
when the liquid is boiling, the temperature is known 
to be 373 K. Therefore equation (28) can be used to 
calculate the value of r,. From equation (28) 

as ao/& = 0. 
Physically, equation (45) represents a simple 

energy balance at a point. Usually this energy 
balance is used to calculate temperature, but since 
the temperature is known, the same energy balance 
gives f‘,. Once r, is known, a new liquid density can 
be calculated at that node using equation (40). Once 
the liquid density becomes zero, the temperature is 
again allowed to increase with r, = 0. 

The primary advantage of this calculation tech- 
nique for the temperature is its extreme simplicity. 
Comparison with the complete theory shows that it 
gives surprisingly accurate results. The serious 
drawback is that it is incapable of predicting the 
pressures which might be of critical significance in 
some cases. Another drawback is that it does not 
take into account condensation. However, there are a 
wide variety of porous media where Darcy’s coef- 
ficient is large and it is not necessary to calculate the 
pressures. This technique will be found very useful in 
such cases. 

RESULTS AND COMPARISONS 

Results 
The specific case of a one-dimensional structural 

element with a uniform initial temperature equal to 
the initial temperature of the gas is considered to 
illustrate the results of the analysis. The element is 
considered to contain uniform initial moisture 
content from X = O-0.9 and the remaining X = 0.9 

- 1.0 length is supposed to be dry. The assumption 
of the existence of a dry region close to the surface is 
physically more realistic if the structure is more than 

a few days old. Two temperature histories are 
utilized to represent the extremes expected for actual 
fire development within structures: 

(1) A long-duration, moderate-intensity fire as 

defined by the American Society for Testing the 
Materials (ASTM), E-l 19 standards as shown in Fig. 

2 [Il. 

+z 4.0 

_i 

4STM _,---- 

z 
II 

al 
3.5 

0.00 0.02 0.04 0.06 0.06 0.10 

NORMALIZED TIME , T = tWL* 

FIG. 2. Dry and wet temperature histories at different 
localities in the structural element for the ASTM E-119 fire 
time-temperature curve for Bi = 0.5, k, = 10, and pl,0 

= 2.91 x 10-2Pthe other parameters are listed in Table 2. 

(2) A short-duration, high-intensity (SDHI) fire 

developed from the work of Magnusson and Thelan- 
dersson [2] as shown in Fig. 3. The standard ASTM 
and SDHI time-temperature curves can be extracted 
from Figs 2 and 3 using the thermal properties of 
concrete listed in Table 1 and L = 0.15 m. 

The thermal properties of concrete are discussed 
by Sahota [33]. Table 1 summarizes the property 
values used. The corresponding dimensionless quan- 
tities are listed in Table 2. The temperature and 
pressure fields thus generated are given in Figs 2-7. 

Figures 2 and 3 show the temperature histories 
given by the complete theory, the simplified analysis, 
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0.00 0.02 0.04 0.06 008 0.10 

NORMALIZED TIME , i. tu/L’ 

FIG. 3. Dry and wet temperature histories for the SDHI 
fire time-temperature curve for conditions identical to 

Fig. 2. 

Table 1. Values of properties and dimensional parameters 
used in Figs 2-7 

cr,= 1140Jkg-‘K-t k,=6.3xlO-“-msm3kg-’ 
D = 2 75 x 10-5mZs-1 
f = 0:9 

u’, I = 1.0 
C( = 6.39 x lo-‘m’s_* 

h=O-s c = 0.21 
h, = lx p = 2400kgmU3 
k = 1.75Js-‘m-r K-t jjr,o = 0-210kgm-3 

Table 2. Values of nondimensional parameters used in Figs 
2--l 

Bi=O-ic Sh = cc 

zp = 1.0 St = 0.1 
D= 1.0 a= 1.0 
E= 1.0 fi= 1.0 

ED = 10-m Pt.0 = o-o. I 
L, = 43 

and the corresponding dry case, at the surface (X 
= 1) and two interior points (X = 0.83 and X = 0.50) 

exposed to ASTM and SDHI fires. The value of 
dimensionless Darcy’s coefficient, k,, used is 10. This 
corresponds to k, = 6.3 x lo-” sm3 kg-‘, applic- 
able to a good quality concrete. The Biot number, Si, 
is chosen to be 0.5 which corresponds to h = 
5.7J~-‘rn-~K-’ for L = 0.15m. The initial dimen- 
sionless liquid density, &-,, considered is 2.92 x 10e2 
which is equivalent to pl,0 = 70 kgms3, which is the 
amount of free water in a fully cured 1:2:4 concrete 
mix with an initial water/cement ratio of 0.5 by 
weight [33]. The temperature histories at the surface 
for the simple theory in Figs 2 and 3 are afmost 
coincident with those for the complete theory and 
are therefore not shown. 

0.0 0.2 0.4 06 0.8 IO 

NORMALIZED DISTANCE, Y= x/L 

FIG. 4. Pressure profiles at ?= 0.08 parameterized in 
Darcy’s coefficient for the ASTM fire time-temperature 

curve for conditions identical to Fig. 2. 

- i;,= IO , ? = 063 
----- E 5 0 103 9 y = 056 
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-- c.,= CD ,ALL X 

i(-_y------. 
I I I I I 

0.00 002 0.04 0.06 0.08 0.10 

NORMALIZED TIME, T=t*/c 

FIG. 5. Pressure histories at the maximum pressure lo- 
cations parameter&d in Darcy’s coefficient for the ASTM 
fire time-temperature curve for conditions identical to 

Fig. 2. 

It can be noted in Figs 2 and 3 that the 
tem~ratures are very close to each other for all 
three analyses. The temperatures for the dry and wet 
cases differ little due to very low amounts of 
moisture in concrete. For higher moisture systems 
the curves for the wet case are expected to shift 
downward making the discrepancies larger. The 
small differences between the simple and complete 
theories arise near the boiling point temperature of 
water at atmospheric pressure due to: (1) The 
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0.00 0.02 0.04 0.06 0.06 0.10 

NORMALIZED TIME , 7 = ta/p 

FIG. 6. Wet temperature histories, j?~t,~= 0.1, for simplified 
analysis at two locations in the structural element for the 
ASTM fire time-temperature curve parameterized in the 
Biot number, Ei-all other parameters are listed in Table 2. 

pressure build up inside the element due to evap- 
oration of water. This pressure raises the boiling 

point temperature of water, so that even though the 
temperature exceeds 373 K, it still remains below the 
local boiling point. The simple theory assumes an 
infinite Darcy’s coefficient which does not allow the 
pressure to rise so that once the temperature reaches 
373K, no further increase is possible until all water 

is evaporated. However, larger discrepancies than 
those shown in Figs 2 and 3 are not expected as 
about the lowest value of k, is used in generating 
these figures. Also the boiling point temperature is 
not sensitive to the slight changes in pressure 
expected in real systems. In addition, these differ- 
ences are not critical to the subsequent stress 

550 r 
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0.00 0.02 0.04 0.06 0.06 0.10 

NORMALIZED TIME , r = tw f 

FIG. 7. Dry temperature histories, Pr = 0, for conditions 
identical to Fig. 6. 

analysis as they occur at low temperatures; (2) due 
to vapor diffusion, water must evaporate at low 
temperatures and act as a heat sink, keeping the 
temperature down. This diffusion is more dominating 

near the surface (this will be apparent by the 
decrease in the temperature plateau observed closer 
to the surface in Fig. 8). Since the simple theory 
ignores mass diffusion completely, evaporation can- 
not take place at temperatures lower than 373 K. 
Therefore the temperatures can also be over- 
predicted by simple theory near 373 K, as will be 
observed in the comparison section. 

250 1 I I I I I I I I I 
0 300 600 900 1200 1500 1800 2100 2400 2700 

TIME SECONDS , 

FIG. 8. Comparison of experimental and theoretical temperature histories for alumina powderPall 
property and parameter values are listed in Table 3. 
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The above two effects counteract each other. The 
temperatures obtained by the simple analysis are 
under-predicted or over-predicted near 373 K de- 
pending upon whether Darcy’s coefficient is low or 
high, i.e. whether diffusion dominates pressure 
effects. These two extremes are represented by: (1) 
Very porous materials, such as alumina powder with 

a low rate of heating; and (2) good quality concrete 
structural members subjected to a very high rate of 
heating. These results and those in the comparison 

section show that even in the extreme cases the 
overall agreement between the simple and complete 
theories is quite good. The largest difference is near t 
= 0.08 for X = 0.5 in Fig. 2, due to the low amounts 

of moisture at low temperatures which are not 
crucial to the stress analysis. It can be concluded that 
as far as the temperature field is concerned, the 
simplified analysis can be used with very good 
accuracy provided C,U,<< 1 and C,Le<c 1, which will 
most often be true. Moreover, the errors generated 
by the inaccuracies in the thermal properties and 
parameters probably exceed those due to the 
simplified theory, (see, for example, Fig. 8). 

Figures 4 and 5 show the pressure profiles and 
pressure histories respectively for the several values 
of Darcy’s coefficient. The values of properties and 
parameters used are the same as in Figs 2 and 3. 
Figure 4 is drawn at a dimensionless time of 0.08, at 
which the maximum pressures were observed. The 

most probable value of ItD for a good quality 
concrete is 10. Therefore pressures of the order of 10 

atmospheres can be expected in concrete elements 
exposed to fire. Such high pressures may cause 
spalling. Fortunately microcracking and cracking, 
which invariably occurs in concrete, makes it more 
permeable. This increases the Darcy’s coefficient and 
therefore causes the moisture to flow more freely, 
thereby avoiding building up of such high pressures. 
Values of the order of lo3 for k, are found in low 
grade concretes or fire clay bricks. Darcy’s coefficient 

z lo5 corresponds to very porous materials such as 
sand and alumina powder. In most situations (except 
for small D with large k, and F with high rate of 
heating) the pressure peaks are observed at the 
dry-wet interface which is clearly defined in the 
computer results. The origin side of the pressure 
peaks is the wet region where the air-vapor mixture 
flows inward and vapor condensation takes place. 
The surface side of the pressure peaks is the dry 
region. The air-vapor mixture in this region moves 
towards the surface. It is interesting to observe the 
negative pressure near the center of the element for 
I& = 10. This indicates specie diffusion dominating 
pressure induced mixture Row. Due to a low value of 
k,, there is much resistance to the flow of the 
air-vapor mixture towards the center. However, due 
to the steep gradients in the mass fractions, the air 
diffuses towards outside (or the vapor diffuses inside) 
at high speeds relative to the mass average velocity 
of the air-vapor mixture. This causes the vapor to 
condense faster than it is replenished by the arrival 

of fresh mixture, thereby producing the negative 
pressures. 

Figure 5 shows the pressure histories for these 
values of ED. The different locations were chosen 
corresponding to where the maximum pressures 
occurred. The maximum pressure should occur at a 
point reasonably far from the surface so that there is 
enough resistance to the flow of gases towards the 
surface to maintain the pressure. At the same time 
the point should be close enough to the surface so as 
to experience a reasonably high rate of heating. So 
there is some optimum location for peak pressures to 
occur corresponding to each value of Darcy’s 
coefficient. Keeping the other parameters constant, 

one observes from Fig. 5 that decreasing k, shifts the 
point of maximum pressure slightly towards the 
inside and increases its magnitude. 

It can be concluded from Figs 4 and 5 that the 
pressure may be important in the heat and mass 
transfer calculations in porous media of low Darcy’s 
coefficient, LD < 103, subject to increased surface 
temperatures. However for I?~ > 103, infinite Darcy’s 
coefficient may safely be assumed. 

Figures 6 and 7 show the temperature histories at 

two locations for wet and dry cases for the more 
commonly recognized ASTM fire. The simplified 
analysis was used to obtain Fig. 6 while Fig. 7, for 
comparison, gives the heat conduction model re- 
sults. The initial dimensionless liquid density pr,0 
used in Fig. 6 is 0.1. This is about the maximum 
amount of moisture found in concrete. Thus Figs. 6 
and 7 represent the two extreme cases of initial 
moisture content. The Biot number, Bi, is varied 
from zero to infinity to obtain general limits; note 
that Bi does not significantly affect the temperature. 
Results corresponding to other Bi have thus not 
been plotted. The curves for Bi 2 10 pass almost 
through the middle of Bi = 0 and Bi = a. For Bi 

5 0.1 the assumption of Bi = 0 is quite accurate. For 
Bi 2 100, the temperature boundary condition might 
safely be assumed. This small variation of tempera- 
tures with Bi indicates that radiation may dominate 
in fires since even for Bi = 0 the temperatures are not 
much different from their maximum values. 

For the two extreme cases of maximum and zero 

liquid densities, respectively, the wet and dry results 
are not as close to each other as in Figs 2 and 3. The 
discrepancy suggests that the dry temperature may 
not always suffice for calculating the temperatures. 
In addition, had the results for the complete theory 
been also plotted in Fig. 6, one would have observed 
excellent agreement with the simple theory except for 
small discrepancies near 373K. The temperature 
plateau in Fig. 6 for Bi = 0 and X = 0.83 is observed 
to be slightly longer than for Bi = x. This indicates 
a slower rate of evaporation of water due to a slower 
local heating rate. 

Comparisons 
Figure 8 shows a comparison between this 

complete analysis, this simplified analysis, and the 
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experimental data of Min and Emmons [30] for 
alumina powder. The curves labeled 1/4in and 1/2in 
indicate the distance of the points beneath the 
surface. The experiments were performed on a 2Qin 
long tube closed from one end and packed with 
alumina powder. Known quantities of water were 
added and the tube heated from the open end with 
electric lamps. The values of properties and para- 
meters used in generating Fig. 8 are as recommended 
by Min and Emmons and are listed in Table 3. The 
temperature specified boundary condition is used. 

Table 3. Values of properties and parameters used in 
Fig. 8 

cp = (P&P, + P&J/P k, = 0.75 J s-I m-’ K-l 
cpa= 837Jkg-‘K-’ L = 0.054 m 
cPl = 4187Jkg-‘K-’ wacc = 1.0 
C = 2.3 x 10~SmZs~’ E = 0.75 

H,=m P = Ps+P! 
k = k, in dry region pl,o = 150kgmm3 

= 2k, in wet region p. = 1000kgmm3 
k, = 6.42 x lo-‘smjkg-’ 

The mixed boundary condition parameters were 

found unsatisfactory, since much lower surface 
temperature histories were obtained than reported 
for both dry and wet runs. Lack of agreement with 

the simple, analytic, dry run suggests incorrect 
parameters. The experimental surface temperature 
history, shown in Fig. 8, is not in [30] and was 

obtained by private communication. According to 
Min, the thermocouple at the surface may have 
overestimated the temperature due to direct ra- 
diation from the lamps and improper contact with 
the surface. However, the difference between the 
actual and the recorded surface temperatures is 
assumed less than the difference between the actual 
and the mixed boundary condition predicted surface 
temperature. Therefore, the measured surface tem- 
perature boundary condition was used. 

Both the complete and simple theories over- 
predict the temperatures slightly. However, the 
agreement between the two theories is again excel- 
lent. As discussed earlier, this case being the high 
porosity extreme, the temperature by the simple 
theory is over-predicted when the liquid is boiling 
because the simple theory ignores diffusion. When all 
the liquid is evaporated at a given point, the simple 
and complete theories converge. The discrepancy 
between the theoretical and the experimental results 
is probably due to an inaccurate surface con- 
dition. It is unlikely to be due to the failure of 
assumptions common to both the complete and 
simplified analyses, such as, neglecting the movement 
of the liquid water and the assumption of no bound 
water. 

CONCLUSION 

An analysis is developed for one-dimensional or 
axi-symmetric heat and mass transfer in a wet, 
porous medium subject to unsteady, nonlinear, 
mixed, boundary conditions. The resulting equations 

have been solved simultaneously by an implicit finite 
difference technique. The numerical computations 

take into account condensation of the vapor in both 
dry and wet regions. The results clearly indicate the 
existence of a dry-wet interface even though no such 
interface has been postulated. When the pressures 
are not required, a simplified technique for calculat- 
ing the temperature has been developed neglecting 
heat transfer by convection and mass diffusion. This 
analysis is valid for C,u,,,<< 1 and C,Le<< 1. The 
results so obtained compared very well with the 

complete analysis. Comparison has been made 
between wet and dry cases, with the practical 
conclusion that for typical concrete, the dry tempera- 
ture field well approximates the wet field. 

An order of magnitude analysis was performed on 
the identified, general, governing nondimensional 
groups. Results have been obtained for Biot 

numbers varying from zero to infinity for the 
American Society for Testing Materials E-119 
time-temperature curve. The agreement between the 
simplified and complete analyses, for the prediction 
of temperature, was found to be so good that the 
general results were plotted using only the simple 
theory. Comparison is made with experimental data 
on alumina powder. The agreement is acceptable. 

Sumple heat conduction calculations appear to 
suffice for moisture contents normally found in 
concrete. However, if the moisture content in 
concrete is high (Pr,o 20.05), as will be the case in a 
new structure with high initial water/cement ratio, 
the actual temperature may be sufficiently below that 
predicted by a dry heat conduction model so as to 
require a wet analysis. If Darcy’s coefficient is low 
(k, 5 103), the pressure developed inside the element 
might be important to the stress analysis. However, 
in most situations, pressures which are dangerous to 

the structure (> 10 atmospheres) are not expected 
due to microcracking and cracking. 

If the pressure is not required, the simplified 
analysis may always be used to predict the tempera- 
ture field in the wet case. An exception to this will be 
when C&i,,, 2 1 or C,Le 2 1 which rarely happens in 
physically realistic situations. Another unimportant 
exception is at low temperatures, when the tempera- 
ture inside the element remains below 373 K for most 
of the time and the evaporation takes place due to 
mass diffusion only. There is no difficulty in principle 
to extending the analysis to multi-dimensions. How- 
ever, the mathematical manipulations will be much 
more complex. The analysis can be modified with 
few changes to solve a variety of other heat and mass 
transfer problems outlined in the Introduction. 
Investigation should be made regarding the impor- 
tance of bound water. If the adsorption characteris- 
tics of the medium are known, it is simple to extend 
the present theory to do so. However, it is claimed 
by Sahota [33] that the maximum amount of bound 
water expected in concrete is less than 100 kgmm3. 
As seen in the results section, this amount is not 
enough to significantly affect the temperature field. 
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The assumption of no liquid movement was made 
in the development of the present theory. This 
assumption is probably very good for low and 
medium pressures. However, for very high pressures 
it is questionable whether the liquid does not move, 
particularly for high moisture content when the 
liquid in the different pores is interconnected. Such 
movement would not be difficult to incorporate. The 

continuity equation for the liquid will have one more 
term. which can be included in the subsequent 
calculations knowing the value of Darcy’s coefficient 
for the liquid. A corresponding slight change would 
also occur in the general energy equation. More 
experiments on concrete are needed to provide 
comparisons with the present theory. These experi- 
ments should determine the temperature, pressure 
and moisture fields, and evaluate Darcy’s coefficient 
for gases in concrete more accurately. Finally, some 
technique of calculating a pseudo thermal con- 

ductivity of wet porous media may be developed 
from the present work so that mass transfer effects 
could be included via this pseudo conductivity, k(T). 
Simpler conduction solutions to heat transfer pro- 

blems in porous media might then suffice. 
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TRANSFERT DE CHALEUR ET DE MASSE DANS DES MILIEUX 
POREUX SOUMIS AU FEU 

Resume~On obtient la solution transitoire de I’ecoulement biphasique et binaire dans des structures 
poreuses de b&on, a une seule dimension ou axisymitrique, exposees a des conditions aux limites mixtes, 

non-lintaires et dipendant du temps. Les mecanismes consideres dans la theorie sont: conduction 

thermique dans tous les composants, diffusion moleculaire des composants gazeux, ecoulement gouverne 

par la pression et obeissant a la loi de Darcy. Les equations de transfert thermique et massique sont 
resolues numiriquement par une methode implicite aux differences finies. Une technique simplifiee pour 
calculer avec I’analyse complete. Les champs de temperature pour les cas sets et humides ne different pas 
sensiblement des quantites normales d’humidite dans le beton. On donne des rtsultats generaux pour 
deux cas limites de feu: la courbe temps-temperature de I’American Society for Testing and Materials E- 
l I9 et une courbe de courte durte et de grande intensite. Des comparaisons entre experience et theorie 
sur les champs de temperature sont faites pour une poudre d’alumine humide et on obtient un bon 
agrement. On discute les applications i des feux sur des structures et on considtre une variete d’autres 

probltmes de transfert de chaleur et de masse. 

WARME- UND STOFFUBERGANG IN POROSEN MEDIEN- DIE FLAMMEN AUSGESETZT 
SIND 

ZusammenfassungpEs wird die instationdre Ldsung angegeben fur die Zwei-Phasen-, Zwei- 
Komponentenstrdmung in eindimensionalen oder axialsymmetrischen porosen Beton-Strukturen mit 
zeitabhangigen, nichtlinearen, gemischten Randbedingungen. Die grundlegenden Mechanismen, die in der 
Theorie betrachtet werden, sind: Warmeleitung durch alle Komponenten, die molekulare Diffusion der 
gasformigen Komponenten und erzwungene Konvektion infolge einer DruckditIerenz die durch das 
Darcy’sche Gesetz beschrieben wird. Die mabgeblichen Warme- und Stoffiibergangsgleichungen werden 
mittels eines impliziten finiten Differenzenverfahrens numerisch gel&t. Zur Berechnung des Temperatur- 
feldes wurde eine vereinfachte Methode entwickelt; die Resultate lassen sich gut mit denen der 
vollstandigen Losung vergleichen. Die Temperaturfelder fur den trockenen und feuchten Fall differieren 
nicht wesentlich bei normalem Feuchtigkeitsgehalt des Betons. Es wurden allgemeine Resultate fur zwei 
Grenzfalle der Feuerentwicklung angegeben: die Zeit-Temperatur-Abhangigkeit E-l 19 der American 
Society for Testing and Materials und eine Kurzzeit-Hockintensitats-Zeit-Temperatur-Abh~ngigkeit. Es 
werden experimentell und theoretisch bestimmte Temperaturfelder in einem pordsen System aus feuchtem 
Tonerdepulver verglichen. Die ijbereinstimmung ist gut. Anwendungen auf Brande in Gebluden und 

eine Vielzahl anderer Warme- und Stoffiibergangsprobleme werden diskutiert. 

TEIIJIO- M MACCOHEPEHDC B IIOPMCTbIX CPEAAX IIPH OI3KHI-E 

AHHOTPUYP - nonygeH0 HecTauHoHapHoe peureHIIe LlJIl LIByXI$a3HOrO LIByXKOMIIOHeHTHOrO TeqeHmI 

B OJIHOMepHbIX WW OCeCIIMMeTpWIHblX nOpHCTbIX 6eTOHHbIX CTpyKTypaX npII HaJIWIHII JaBIICIlIIQIX OT 

BpeMeHB HeJIIIHetiHbIX CMeIIIaHHbIX rpaHII’IHbIX yCJIOBHk B TeO~TII’IeCKOM aHaJIII3e y’ITeHbI OCHOBHbIe 

MeXaHW3MLd IlpOlWCa: TenJIOnpOBOAHOCTb BCeX KOMnOHeHTOB CUCTeMbI, MOJIeKyEIpHan AU44y3UII 

ra30BbIX KOMIIOHeHTOB II BbI3blBaeMbIfi pa3HOCTbm LIaBJIeHIIfi KOHBeKTHBHbIti nOTOK, OIIIICbIBaeMbIii 

3aKOHOM AapCII. &HOBHbIe ypaBHeHHa TeIIJIO- II MeCCOnepeHOCa peIIIaJIHCb ‘IIICJIeHHO C nOMOIIIbIo 

HeRBHOfi KOHe’IHO-pa3HOCTHOii CXeMbI. Pa3pa6OTaH IIpOCTOii MeTOLI paC’I&Ta TeMnepaTypHbIX nOJIeii II 

nonyseao xopomee connaneHue c pe3ynbTaTaMK nonHor0 aHann3a. PacnpeneneHss TebmepaTyp 

B cyxex II B,IamHbIX o6pasuax B cnyqae HOpMa,IbHOrO conepmaHIin nnarK B 6eTOHe 6bma B WHOBHOM 

OJIIIHaKOBbIMII. npIIBeneHb1 o6mee pe3yJIbTaTbI JIJIll ABYX IIlWIeJIbHbIX CJIy’IaeB o6mera: KpIIBaa 

3aBIICHMOcTII TeMnepaTypbI OT BpeMeHII (AMepIIKaHCKOe o6IIIecTBo IICnbITaHIIfi II Marepnanoe E-l 19) 
U KpHBaX 3aBACIIMOCTII TeMnepaTypbI OT BpeMeHH B CJIy’Iae He6OJIbmOfi JI,IHTe,IbHOCTW II 6onbmofi 
AHTeHCIIBHOCTW npOIIeCCa. npOBeLIeH0 CpaBHeHIIe MeWIy 3KCnepIIMeHTaJIbHbIMH II TeOpeTWIeCKIIMI, 

3HaSeHIIRMH PaCIIpeJIeJIeHHfi TeMnepaTyp BO BJIamHOM nOpIICTOM UIlOMHHHeBOM nOpOIIIKe. nOJIyYeH0 

XOpOIIIee COBnaLIeHHe rIaHHbIX. 06CyWaIOTCK BOSMOXHOCTH aHaJIOrH’IHbIX HCCJIeLIOBaHHii nJIll CTpyK- 

TypHoro o6mura H pnna .LIpyrex npo6neM Tenno- n Macconepenoca. 


